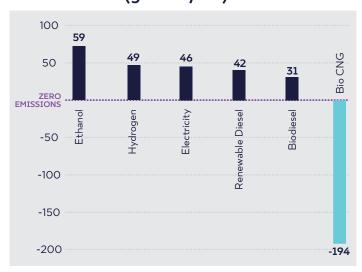

Decarbonizing California Fleets

with Renewable Natural Gas (RNG) Transportation

For the fifth consecutive year, California fleets fueled with in-state bio-CNG were carbon-negative in 2024, based on an annual average carbon intensity score of -194.13 gCO2e/MJ. RNG sourced from dairy digesters, local landfills, wastewater treatment plants, commercial food waste facilities, and agricultural operations provides the most affordable and proven solution to decarbonize medium- and heavy-duty transportation today.

Note: gCO2e/MJ = grams of carbon dioxide equivalent per megajoule of energy. Data from California Air Resources Board (CARB) Low Carbon Fuel Standard (LCFS) Reporting Tool Quarterly Summaries

The only motor fuel with negative carbon intensity



At -194.13, bio-CNG holds the lowest average carbon intensity of any clean fuel option on California's roadways today and is the only fuel with a negative carbon intensity

Note: Data from CARB LCFS Reporting Tool Quarterly Summaries (calculated weighted average)

CA LCFS 2024 Renewable Fuels Average CI Score (qCO2e/MJ)

Note: Baseline conventional diesel carbon intensity = 100.45.

Data from CARB's LCFS Reporting Tool Quarterly Summaries
Bio-LNG not listed above as bio-CNG accounts for more
than 94 percent of all RNG used in on-road vehicles

Report produced August 2025 by:

Supporting Partner:

Decarbonizing California Fleets

with Renewable Natural Gas Transportation

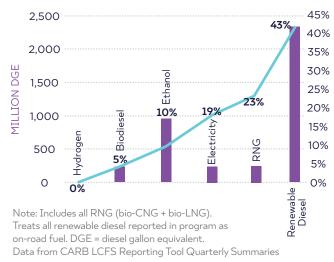
By the numbers...

RNG use as a transportation fuel in California has increased 44% over the last five years.

In 2024 alone, California's RNG motor fuel use resulted in the displacement of **7.7 million metric tons** of carbon dioxide equivalent (CO2e) emissions.

RNG use in 2024 accounted for over 27% of all the emission reductions generated by motor fuels or 21% of all credits generated under the program including credits for on-road and off-road electric use, electric infrastructure, and refinery improvements.

RNG's 2024 GHG emissions reductions are the equivalent of removing


1,789,601 gasolinepowered cars from California roadways for one year.

Note: Natural gas volumes and emission reductions calculated using figures available from CARB LCFS Reporting Tool Quarterly Summaries

Packing a big punch

While RNG made up just **5.6%** of all on-road alternative fuels dispensed by volume, it generated **22.5%** of all CO2e reductions of on-road alternative fuels reported under the California LCFS in 2024.

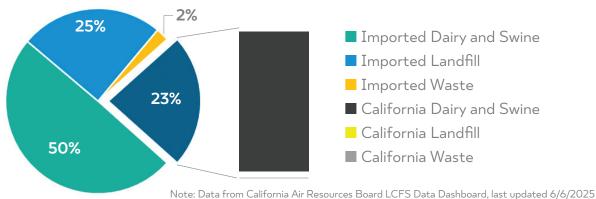
2024 On-Road Alternative Fuels Volumes & Emission Reductions

CA LCFS is a success

2024 CA NGV Fuel Use 220.87 million DGE total

In 2024, 99% of all on-road fuel used in natural gas vehicles in California was RNG, driven by the state's LCFS program

Report produced August 2025 by:

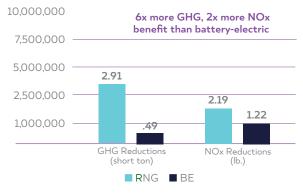

Supporting Partner:

Decarbonizing California Fleets

with Renewable Natural Gas Transportation

Volume share of RNG dispensed in California by source in 2024

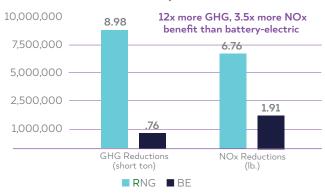
Year	2021	2022	2023	2024
Share of Total Reported Biomethane	9			
Volume that was Produced in State	6.74%	16.00%	18.23%	23.21%
Total Instate Volumes (DGE)	10,947,399	29,847,515	37,544,319	52,643,148


What a \$100 million investment achieves

If the grant covers full cost of truck...

Number of new trucks on road

Emission reductions impact



If the grant covers incremental cost only...

Number of new trucks on road

Emission reductions impact

Note: Class 8 truck costs estimated at \$156,000 for diesel, \$231,000 for natural gas, and \$436,000 for battery-electric, leaving incremental costs of \$75,000 for natural gas and \$280,000 for battery-electric. Costs do not include refueling infrastructure. Emissions assumptions include 1:1 replacement and same mileage per truck per year regardless of powertrain. Natural gas emission values derived from a rough 25/75 landfill gas/anaerobic digester (dairy & swine) RNG mix as reported above

Report produced August 2025 by:

