

INTRODUCTION OF THE HEAVY-DUTY VEHICLE EMISSIONS CALCULATOR (HDVEC)

ANDREW BURNHAM Principal Environmental Scientist aburnham@anl.gov

NGVAmerica VW Settlement Webinar May 23, 2018

OUTLINE OF PRESENTATION

- Introduction
- Heavy-Duty Vehicle Emissions Calculator (HDVEC)
- HDVEC Tutorial Demo #1 Environmental Mitigation w/ Scrappage
- HDVEC Tutorial Demo #2 Environmental Mitigation w/ Repower
- HDVEC Tutorial Demo #3 Clean Vehicle Replacement

Introduction

ARGONNE HAS SUPPORTED DOE WITH TOOL DEVELOPMENT FOR 20 YEARS

- AirCRED
 - Air pollutants for SIPs
- Clean Cities AOI 4
 Emissions Benefit Tool
 - GHG & air pollutant benefits for ARRA grant proposals
- GREET Fleet Footprint Calculator
 - Petroleum use & GHGs of HDVs & off-road equipment

"AFLEET TOOL" TO ANALYZE AFV COSTS & BENEFITS

Examines light-duty & heavy-duty vehicle:

- Petroleum use
- GHGs
- Air pollutants
- Cost of ownership

Contains 18 fuel/vehicle technologies

- Conventional
- Hybrids
- Plug-in electrics
- Alternative fuels: CNG, LNG, LPG, H₂, EtOH, BD, RD

Includes 7 Major Vehicle Types

- Cost, MPG, & VMT data on 26 vocations

• AFLEET Tool 2017 & user manual available at:

greet.es.anl.gov/afleet

AFLEET TOOL'S CALCULATION METHODS

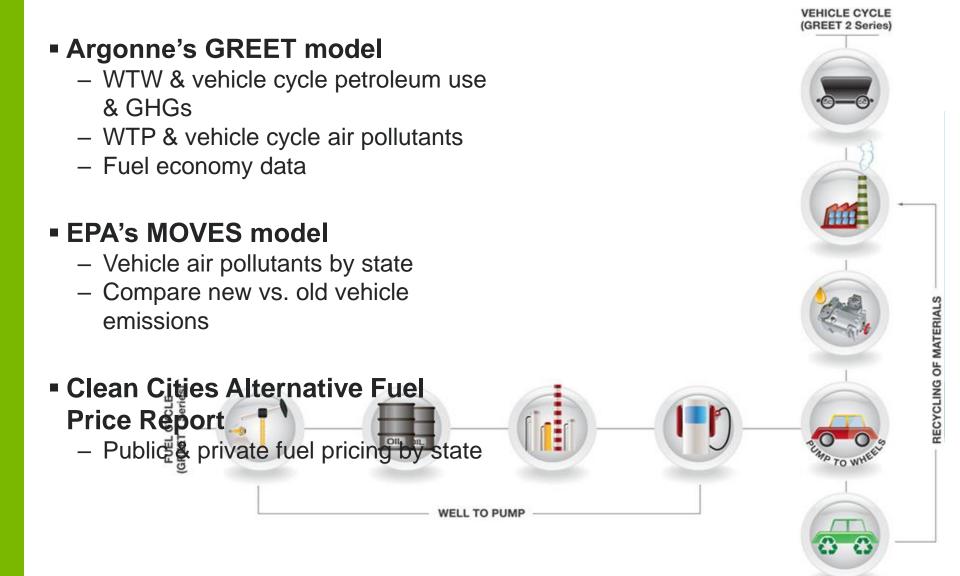
- Tool has 4 calculation methods & which to use depends on your goals
- Fleet Energy and Emissions Footprint Calculator
 - Annual & remaining lifetime petroleum use, GHGs & air pollutant emissions of <u>existing & new vehicles</u>

Simple Payback Calculator

 Annual emissions & simple payback of purchasing <u>new</u> <u>AFV vs. conventional counterpart</u>

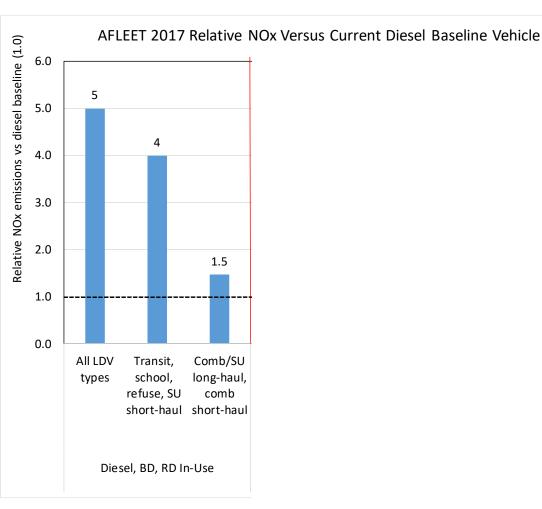
Total Cost of Ownership Calculator

 Lifetime emissions & NPV of costs over the years of planned ownership of a <u>new vehicle</u>


Idle Reduction Calculator

 Annual emissions & simple payback of purchasing of <u>IR</u> equipment vs. idling of conventional vehicles

AFLEET TOOL'S MAJOR DATA SOURCES



AFLEET TOOL 2017 UPDATES – DIESEL IN-USE EMISSIONS & LOW-NO_X ENGINES

- Added feature to examine diesel inuse NOx emission estimates
 - Factors based on Anenberg, Cai, Sandhu & MOVES
 - MOVES needs to revise diesel NOx

Added feature to examine HD NGV Low-NOx engines

- Factors based on Cai

Anenberg, 2017, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets doi:10.1038/nature22086;

Cai, 2017, Wells to Wheels: Environmental Implications of Natural Gas As A Transportation Fuel

8

HDVEC Introduction

HEAVY-DUTY VEHICLE EMISSIONS CALCULATOR

- Simple online tool based on AFLEET to help analyze AFVs for funding opportunities
- Examines medium-duty & heavy-duty vehicle:
 - Vehicle operation NO_x & PM_{2.5}
 - WTW GHGs
 - Emission reduction cost effectiveness

Contains 4 fuel/vehicle technologies:

- Diesel
- Electric vehicle
- Propane
- Natural Gas

HDVEC available at:

afleet-web.es.anl.gov/hdv-emissions-calculator/

HDVEC'S CALCULATION METHODS

- Tool has 3 calculation methods & which to use depends on project type
- Environmental Mitigation w/ Scrappage
 - New AFV vs. new diesel, plus additional benefit from early retirement of scrapped vehicle

Environmental Mitigation w/ Repower

- Vehicle after repower vs. diesel vehicle before repower

Clean Vehicle Replacement

- New AFV vs. new diesel

HDVEC Tutorial - Demo #1 -Environmental Mitigation w/ Scrappage

3 tabs: About, Vehicle Options, & Results

About

Vehicle Options Results

HEAVY-DUTY VEHICLE EMISSIONS CALCULATOR

The Heavy-Duty Vehicle Emissions Calculator was developed to estimate the vehicle operation nitrogen oxide (NO_X) and particulate matter (PM_{2.5}), as well as the well-to-wheel greenhouse gas emissions (GHGs) of commercially available alternative fuel medium- and heavy-duty vehicles. This tool is ideally suited to aid fleets and decision makers compare vehicle technologies for emission reductions and consider allocation of funding.

The tool can calculate results for 3 project types:

- Environmental Mitigation w/ Scrappage
 - New alternative fuel versus new diesel, plus additional benefit from early retirement of scrapped vehicle.
- Environmental Mitigation w/ Repower
 - Vehicle after repower versus diesel vehicle before repower.
- Clean Vehicle Replacement
 - New alternative fuel versus new diesel.

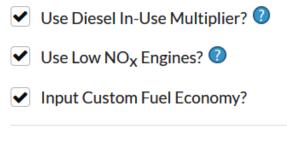
The first two are specifically for environmental mitigation projects such as those funded under the *Clean Diesel Settlement* or the *Diesel Emission Reduction Program*, while the third provides results without the scrappage benefit. The Heavy-Duty Vehicle Emissions Calculator was developed using the AFLEET Tool 2017, available at: https://greet.es.anl.gov/afleet. AFLEET Tool 2017 uses emissions data from both the EPA's MOVES and Argonne's GREET models.

Get Started

Ist step: on "Vehicle Options" enter project type and state

oject Options	
Load Previously Saved Poject?	
Save Project?	
Project Type 🕐	
Environmenal Mitigation with Scrappage	•
State	
ILLINOIS	-

Optional: load existing project or save (enter project name)


oject Options	
✓ Load Previously Saved Poject?	
Select a Previous Project	
	•
✓ Save Project?	
Project Name	
IL-School Bus	
Project Type 🕜	
Environmenal Mitigation with Scrappage	•
State	
ILLINOIS	-

 2nd step: enter vehicle type, # of vehicles, MY of scrapped vehicle, yrs of early retirement, new vehicle lifetime, and VMT

Vehicle Options	
Vehicle Type 🕜	
School Bus	•
Number of Vehicles	
10	\$
Model Year of Scrapped Vehicle	
2006	\$
Estimate Years for Early Retirement of Scrapped Vehicle	
5	\$
Estimate Lifetime of New Vehicle (Years)	
15	\$
Annual Miles of Scrapped Vehicle	
15000	\$
Annual Miles of New Vehicle	
15000	\$

 Optional: use diesel in-use multiplier, low NOx engines, custom fuel economy data

Old Diesel (MPDGE)

7.7 🗢

New Diesel (MPDGE)

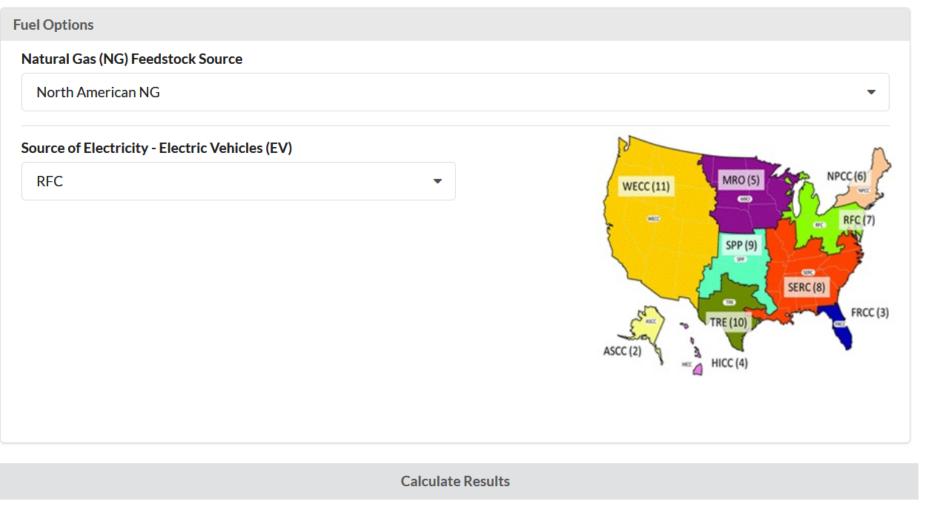
7.7	÷

Natural Gas (MPDGE)

6.5

Propane (MPDGE)

6.4	-



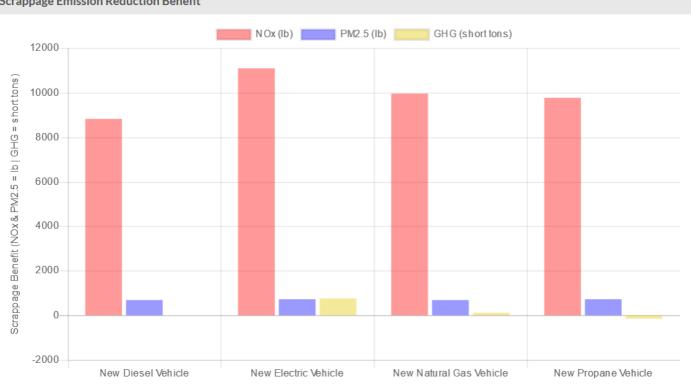
• 4th step: enter funding requested (for cost effectivenss)

 5th step: enter NG feedstock and EV source (default = state selected) and click "Calculate Results"

-

• Optional: enter custom electricity mix

Cus	stom Mix	
Resid	ual Oil	
%	0.6	\$
Nautr	al Gas	
%	31.9	\
Coal		
%	34.3	\$
Nucle	ar	
%	20.4	
Bioma	ass	
%	0.2	\$
Renev	wable (e.g. Wind,	Solar)
%	12.6	L e l



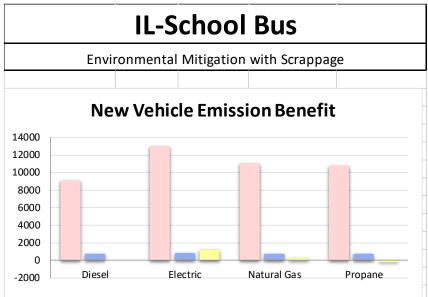
Total: 100%

Calculate Results

Results: emission benefits (higher value = more reduction)

New Vehicle Emission Benefits 📀						
Pollutant	Diesel	Electric	Natural Gas	Propane		
NO _X (Ib)	8,824.23	11,073.59	9,948.91	9,767.45		
PM _{2.5} (lb)	701.40	737.12	701.40	707.72		
GHG (short tons)	0.00	755.61	105.72	-130.05		

Scrappage Emission Reduction Benefit


 Results: cost effectiveness (lower value = more cost effective) & Optional: export results to Excel

New Vehicle Cost Effectiveness 🕐							
Pollutant	Diesel	Electric	Natural Gas	Propane			
NO _X (\$/Ib)	\$113	\$271	\$131	\$113			
PM2.5 (\$/lb)	\$1,426	\$4,070	\$1,853	\$1,554			
GHG (\$/ton) N/A \$3,970 \$12,297 N/A							

Export Results

Optional: export to Excel 3 sheets Results, Inputs, Emissions

NOx (Ib) PM2.5 (Ib) GHG (short tons)

New Vehicle Emission Benefits					
Pollutant Diesel Electric Natural Gas Propane					
NOx (lb)	9053.38	12946.74	11000.06	10772.04	
PM2.5 (lb)	747.7	807.88	747.7	755.56	
GHG (short tons)	0	1138.8	186.04	-183.78	
	New Vel	nicle Cost Effe	ectiveness		
Pollutant	Diesel	Electric	Natural Gas	Propane	
NOx (lb)	\$110	\$232	\$118	\$102	
PM2.5 (lb)	\$1,337	\$3,713	\$1,739	\$1,456	
GHG (short tons)	\$0	\$2,634	\$6,988	\$0	

Project Op	tions			
State	IL			
Project Type	Environmental Mitigation with Scrappage			
Vehicle Op	tions			
Туре	School Bus			
Number of Vehicles	10			
Model Year of Scrapped Vehicle	2006			
Years for Early Retirement of Scrapped Vehicle	5			
Lifetime of New Vehicle (Years) After Scrappage	e 10			
Annual Miles of Scrapped Vehicle	15000			
Annual Miles of New Vehicle	15000			
Use Diesel In-Use Multiplier?	No			
Use Low NOx Engines?	No			
Funding Opt	ions (\$)			
Diesel Vehicle Funding	\$1,000,000.00			
Electric Vehicle Funding	\$3,000,000.00			
Natural Gas Vehicle Funding	\$1,300,000.00			
Propane Vehicle Funding	\$1,100,000.00			
Fuel Opti	ons			
Natural Gas (NG) Feedstock Source	North American NG			
Source of Electricity	RFC			

Optional: export to Excel 3 sheets Results, Inputs, Emissions

Fuel Diesel	Year 2006	Remaining Years	Scrappage Years	Emission Rate (g/mi)
Diesel		NI / A		(8/111)
		N/A	5	6.174
Diesel	2017	N/A	5	0.69861039
Diesel	2017	10	N/A	0.828029221
Electric	2017	N/A	5	0
Electric	2017	10	N/A	0
Natural Gas	2017	N/A	5	0.349305195
Natural Gas	2017	10	N/A	0.41401461
Propane	2017	N/A	5	0.411012346
Propane	2017	10	N/A	0.45211358
		PM2.5 Er	nissions	
Fuel	Year	Remaining Years	Scrappage Years	Emission Rate (g/mi)
Diesel	2006	N/A	5	0.463
Diesel	2017	N/A	5	0.0108
Diesel	2017	10	N/A	0.0128
Electric	2017	N/A	5	0
Electric	2017	10	N/A	0
Natural Gas	2017	N/A	5	0.0108
Natural Gas	2017	10	N/A	0.0128
Propane	2017	N/A	5	0.008888889
Propane	2017	10	N/A	0.011377778

		1				
GHG Emissions						
Fuel Year Remaining Years Scrappage Yea				Emission Rate (g/mi)		
Diesel	2006	N/A	5	1673.965663		
Diesel	2017	N/A	5	1673.965663		
Diesel	2017	10	N/A	1673.965663		
Electric	2017	N/A	5	1214.810242		
Electric	2017	10	N/A	1214.810242		
Natural Gas	2017	N/A	5	1598.955124		
Natural Gas	2017	10	N/A	1598.955124		
Propane	2017	N/A	5	1748.064074		
Propane	2017	10	N/A	1748.064074		

Transit bus results: diesel in-use or low-NOx options <u>not selected</u>

New Vehicle Emission Benefits 🕐						
Pollutant	Diesel	Electric	Natural Gas	Propane		
NO _X (lb)	32,521.53	44,946.50	38,734.02	N/A		

Transit bus results: diesel in-use or low-NOx options <u>selected</u>

New Vehicle Emission Benefits 🕖						
Pollutant	Diesel	Electric	Natural Gas	Propane		
NO _X (lb)	21,195.41	70,895.28	70,274.03	N/A		

HDVEC Tutorial - Demo #2 -Environmental Mitigation w/ Repower

Ist step: on "Vehicle Options" enter project type and state

Project Options	
Load Previously Saved Poject?	
Save Project?	
Project Type 🕐	
Environmental Mitigation with Repower	•
State	
ILLINOIS	▼

 2nd step: enter vehicle type, # of vehicles, MY of repowered vehicle, new vehicle lifetime, and VMT
 all other steps same as Scrappage option

Vehicle Options	
Vehicle Type 🕐	
School Bus	•
Number of Vehicles	
10	\$
Model Year of Repowered Vehicle	
2006	\$
Estimate Lifetime of New Vehicle (Years)	
5	\$
Annual Miles of New Vehicle	
15000	\$

HDVEC Tutorial - Demo #3 - Clean Vehicle Replacement

HDVEC TUTORIAL - CLEAN VEHICLE REPLACEMENT

• 1st step: on "Vehicle Options" enter project type and state

Project Options	
Load Previously Saved Poject?	
Save Project?	
Project Type 🕐	
Clean Vehicle Replacement	•
State	
ILLINOIS	•

 2nd step: enter vehicle type, # of vehicles, new vehicle lifetime, and VMT
 all other steps same as Scrappage option

Vehicle Options	
Vehicle Type 🕜	
School Bus	•
Number of Vehicles	
10	\$
Estimate Lifetime of New Vehicle (Years)	
5	\$
Annual Miles of New Vehicle	
15000	\$

HDVEC SUMMARY

- Argonne's HDVEC estimates NO_x, PM_{2.5}, and GHGs and cost effectiveness of med- & heavy-duty vehicles for funding opportunities
 - Easy to use, online interface
- Based on the AFLEET Tool emissions, calculations and data
 - Includes 4 fuels: diesel, electricity, propane & NG

Includes 3 calculations options for different projects

- Environmental Mitigation w/ Scrappage
- Environmental Mitigation w/ Repower
- Clean Vehicle Replacement

THANK YOU!!!

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

This work has been supported and assisted by: Linda Bluestein: U.S. DOE Dennis Smith: U.S. DOE Jeff Clarke: NGVAmerica David Jura: Argonne Marcy Rood: Argonne Michael Wang: Argonne Hao Cai: Argonne Josh Lin, Oscar Hermina-Tosado, Emelia Gold, Stephanie Taylor

www.anl.gov

BACKUP SLIDES

HDVEC CALCULATION SUMMARY

Variables:

- A = Emissions of scrapped diesel vehicle (using scrappage years and scrappage annual miles from inputs)
- B = Emissions of new baseline diesel vehicle (using scrappage years and scrappage annual miles from inputs)
- C = Emissions of new baseline diesel vehicle (using new remaining years and new vehicle annual miles from inputs)
- D = Emissions of new AFV (using scrappage years and scrappage annual miles from inputs)
- E = Emissions of new AFV (using new remaining life years and new vehicle annual miles from inputs)

Scrappage Benefit Calculations:

Note: For scrappage projects "C" and "E" remaining years = lifetime years minus scrappage years

- New diesel vehicle w/ scrappage benefit = (A-B)
- New AFV w/ scrappage benefit = (A-D) + (C-E)

Repower Benefit Calculations:

Note: For repower projects, "A" is calculated using new lifetime years and new vehicle mileage

- Diesel repower benefit = (A-C)
- AFV repower benefit = (A-E)

Clean Vehicle Benefit Calculations:

AFV benefit = (C-E)

